Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Protein synthesis is a tightly regulated process that enables post-transcriptional control of gene expression. Dysregulation of this process is associated with the development and progression of cancers because components of the translational machinery function at the point of convergence of aberrant cell signaling pathways. Drugs designed to inhibit mRNA translation are currently in preclinical and early clinical development, and are likely to provide effective anticancer strategies in the future. In this Review, we summarize the main components of translation and describe how alterations in these proteins and their principle upstream signaling pathways can impact on cancer. The first inhibitors of translation, drugs designed to target eIF4E, have been trialed in hematologic malignancies, while antisense oligonucleotides against eIF4E are also due to enter clinical trials. Here, we discuss the mode of action of drugs designed to inhibit mRNA translation and other promising therapies that are in preclinical development with the aim of becoming anticancer agents.

Original publication

DOI

10.1038/nrclinonc.2011.16

Type

Journal article

Journal

Nat Rev Clin Oncol

Publication Date

05/2011

Volume

8

Pages

280 - 291

Keywords

Animals, Antineoplastic Agents, Humans, Neoplasms, Protein Biosynthesis, RNA, Messenger