Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Altered expression of the eukaryotic translation initiation factor 3 (eIF3) subunit eIF3e/INT6 has been described in various types of human cancer, but the nature of its involvement in tumorigenesis is not yet clear. Using immunohistochemical analysis of 81 primary breast cancers, we found that high tumor grade correlated significantly with elevated cytoplasmic eIF3e level in epithelial tumor cells. Analysis of protein synthesis after siRNA-mediated knockdown in breast cancer cell lines indicated that eIF3e is not required for bulk translation. Microarray analysis of total and polysomal RNAs nonetheless identified distinct sets of mRNAs regulated either positively or negatively by eIF3e; functional classification of these revealed a marked enrichment of genes involved in cell proliferation, invasion and apoptosis. Validated mRNA targets regulated positively at the translational level by eIF3e included urokinase-type plasminogen activator and apoptotic regulator BCL-XL, whereas synthesis of proteins including the mitotic checkpoint component MAD2L1 was negatively regulated. Finally, eIF3e-depleted breast carcinoma cells showed reduced in vitro invasion and proliferation. Taken together, our study data suggest that eIF3e has a positive role in breast cancer progression. It regulates the translation, and in some cases abundance, of mRNAs involved in key aspects of cancer cell biology.

Original publication

DOI

10.1038/onc.2010.152

Type

Journal article

Journal

Oncogene

Publication Date

15/07/2010

Volume

29

Pages

4080 - 4089

Keywords

Breast Neoplasms, Eukaryotic Initiation Factor-3, Female, Heat-Shock Proteins, Humans, Oncogenes