Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Regions of insufficient oxygen supply-hypoxia-occur in diverse contexts across biology in both healthy and diseased organisms. The difference in the chemical environment between a hypoxic biological system and one with normal oxygen levels provides an opportunity for targeting compound delivery to hypoxic regions by using bioreductive prodrugs. Here we detail a protocol for the efficient synthesis of (1-methyl-2-nitro-1H-imidazol-5-yl)methanol, which is a key intermediate that can be converted into a range of 1-methyl-2-nitro-1H-imidazole-based precursors of bioreductive prodrugs. We outline methods for attaching the bioreductive group to a range of functionalities, and we discuss the strategy for positioning of the group on the biologically active parent compound. We have used two parent checkpoint kinase 1 (Chk1) inhibitors to exemplify the protocol. The PROCEDURE also describes a suite of reduction assays, of increasing biological relevance, to validate the bioreductive prodrug. These assays are applied to an exemplar compound, CH-01, which is a bioreductive Chk1 inhibitor. This protocol has broad applications to the development of hypoxia-targeted compounds.

Original publication




Journal article


Nat Protoc

Publication Date





781 - 794


Antineoplastic Agents, Cell Line, Tumor, Checkpoint Kinase 1, Enzyme Inhibitors, Humans, Hypoxia, Metronidazole, Prodrugs, Protein Kinases, Technology, Pharmaceutical