Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

It is not uncommon for cancer geneticists to be referred families with apparently Mendelian co-inheritance of breast and bowel cancer. Such families present a particular problem as regards the intensity of their screening for these diseases and the utility of genetic testing. Many 'breast-colon' cancer families probably result from chance clustering of two common cancers. Other 'breast-colon' cancer families may result from known cancer syndromes, such as hereditary breast-ovarian cancer or hereditary non-polyposis colon cancer, either by conferring a high risk of one cancer type and a slightly increased risk of the other, or through a predisposition to one of the two cancers and chance occurrence of the other. Anecdotally, however, many geneticists wonder about the existence of a distinct 'breast-colon cancer syndrome', since some families present good a priori evidence of genetic disease and yet cannot readily be accounted for by known genes or chance. The identification of unknown 'breast-colon cancer' genes is likely to be difficult, relying primarily on candidate gene analysis, including loci separately implicated in breast or colorectal cancer, or in other multiple cancer syndromes. Studies such as those on APC I1307K and CHEK2 1100delC may suggest the way forward for the identification of 'breast-colon cancer' genes.

Original publication




Journal article


Fam Cancer

Publication Date





189 - 195


Adult, Breast Neoplasms, Checkpoint Kinase 2, Colorectal Neoplasms, Female, Gene Frequency, Genes, APC, Genetic Heterogeneity, Genetic Predisposition to Disease, Humans, Male, Mutation, Pedigree, Phenotype, Protein Serine-Threonine Kinases