Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Olaparib is poorly soluble, requiring advanced drug delivery technologies for adequate bioavailability. Sixteen capsules/day are required for the approved 400 mg twice-daily dose; a tablet formulation was developed to reduce pill burden. This clinical trial evaluated the optimal dose and administration schedule of the tablet formulation. PATIENTS AND METHODS: Two stages of sequentially enrolled cohorts: stage 1, pharmacokinetic properties of tablet and capsule formulations were compared in patients with advanced solid tumours; stage 2, tablet dose escalation with expansion cohorts at doses/schedules of interest in patients with solid tumours and BRCAm breast/ovarian cancers. RESULTS: Olaparib 200 mg tablets displayed similar Cmax,ss, but lower AUCss and Cmin,ss than 400 mg capsules. Following multiple dosing, steady-state exposure with tablets ≥300 mg matched or exceeded that of 400 mg capsules. After dose escalation, while 400 mg twice daily was the tablet maximum tolerated dose based on haematological toxicity, 65 % of patients in the randomized expansion phase eventually required dose reduction to 300 mg. Intermittent tablet administration did not significantly improve tolerability. Tumour shrinkage was similar for 300 and 400 mg tablet and 400 mg capsule cohorts. CONCLUSIONS: The recommended monotherapy dose of olaparib tablet for Phase III trials was 300 mg twice daily, simplifying drug administration from 16 capsules to four tablets per day. CLINICAL TRIAL NUMBER: NCT00777582 (ClinicalTrials.gov).

Original publication

DOI

10.1007/s11523-016-0435-8

Type

Journal article

Journal

Target Oncol

Publication Date

06/2016

Volume

11

Pages

401 - 415

Keywords

Female, Humans, Male, Maximum Tolerated Dose, Phthalazines, Piperazines, Poly(ADP-ribose) Polymerase Inhibitors