Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The cystic fibrosis transmembrane conductance regulator gene (CFTR) shows a complex pattern of expression. The regulatory elements conferring tissue-specific and temporal regulation are thought to lie mainly outside the promoter region. Previously, we identified DNase I hypersensitive sites (DHS) that may contain regulatory elements associated with the CFTR gene at -79.5 and at -20.5 kb with respect to the ATG and at 10 kb into the first intron. MATERIALS AND METHODS: In order to evaluate these regulatory elements in vivo we examined these DHS in a human CFTR gene that was introduced on a yeast artificial chromosome (YAC) into transgenic mice. The 310 kb human CFTR YAC was shown to restore the pheno-type of CF-null mice and so is likely to contain most of the regulatory elements required for tissue-specific expression of CFTR. RESULTS: We found that the YAC does not include the -79.5 kb region. The DHS at -20.5 kb is present in the chromatin of most tissues of the transgenic mice, supporting its non-tissue-specific nature. The DHS in the first intron is present in a more restricted set of tissues in the mice, although its presence does not show complete concordance with CFTR expression. The intron I DHS may be important for the higher levels of expression found in human pancreatic ducts and in lung submucosal glands. CONCLUSION: These data support the in vivo importance of these regulatory elements.


Journal article


Mol Med

Publication Date





211 - 223


Animals, Chromosomes, Artificial, Yeast, Cystic Fibrosis Transmembrane Conductance Regulator, Deoxyribonuclease I, Gene Expression, Genetic Complementation Test, Humans, Mice, Mice, Transgenic, Protein Binding, Regulatory Sequences, Nucleic Acid, Restriction Mapping, Reverse Transcriptase Polymerase Chain Reaction, Species Specificity, Tissue Distribution