Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Linear registration and motion correction are important components of structural and functional brain image analysis. Most modern methods optimize some intensity-based cost function to determine the best registration. To date, little attention has been focused on the optimization method itself, even though the success of most registration methods hinges on the quality of this optimization. This paper examines the optimization process in detail and demonstrates that the commonly used multiresolution local optimization methods can, and do, get trapped in local minima. To address this problem, two approaches are taken: (1) to apodize the cost function and (2) to employ a novel hybrid global-local optimization method. This new optimization method is specifically designed for registering whole brain images. It substantially reduces the likelihood of producing misregistrations due to being trapped by local minima. The increased robustness of the method, compared to other commonly used methods, is demonstrated by a consistency test. In addition, the accuracy of the registration is demonstrated by a series of experiments with motion correction. These motion correction experiments also investigate how the results are affected by different cost functions and interpolation methods.

Type

Journal article

Journal

Neuroimage

Publication Date

10/2002

Volume

17

Pages

825 - 841

Keywords

Acoustic Stimulation, Algorithms, Brain, Computer Simulation, Data Interpretation, Statistical, Fuzzy Logic, Humans, Image Interpretation, Computer-Assisted, Linear Models, Models, Neurological, Motion, Photic Stimulation, Reproducibility of Results