Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tumour heterogeneity has major implications for tumour development and response to therapy. Tumour heterogeneity results from mutations in the genes responsible for mismatch repair or maintenance of chromosomal stability. Cells with different genetic properties may grow at different rates and exhibit different resistance to therapeutic interventions. To date, there exists no approach to non-invasively assess tumour heterogeneity. Here we present a biologically inspired model of tumour growth, which relates intratumoral genetic heterogeneity to gross morphology visible on radiological images. The model represents the development of a tumour as a set of expanding spheres, each sphere representing a distinct clonal centre, with the sprouting of new spheres corresponding to new clonal centres. Each clonal centre may possess different characteristics relating to genetic composition, growth rate and response to treatment. We present a clinical example for which the model accurately tracks tumour growth and shows the correspondence to genetic variation (as determined by array comparative genomic hybridisation). One clinical implication of our work is that the assessment of heterogeneous tumours using Response Evaluation Criteria In Solid Tumours (RECIST) or volume measurements may not accurately reflect tumour growth, stability or the response to treatment. We believe that this is the first model linking the macro-scale appearance of tumours to their genetic composition. We anticipate that our model will provide a more informative way to assess the response of heterogeneous tumours to treatment, which is of increasing importance with the development of novel targeted anti-cancer treatments.

Original publication




Journal article


Br J Radiol

Publication Date





166 - 170


Algorithms, Anisotropy, Colorectal Neoplasms, Disease Progression, Genetic Heterogeneity, Humans, Liver Neoplasms, Models, Biological, Radiography, Treatment Outcome