Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We propose a modification of Wells et al. technique for bias field estimation and segmentation of magnetic resonance (MR) images. We show that replacing the class other, which includes all tissue not modeled explicitly by Gaussians with small variance, by a uniform probability density, and amending the expectation-maximization (EM) algorithm appropriately, gives significantly better results. We next consider the estimation and filtering of high-frequency information in MR images, comprising noise, intertissue boundaries, and within tissue microstructures. We conclude that post-filtering is preferable to the prefiltering that has been proposed previously. We observe that the performance of any segmentation algorithm, in particular that of Wells et al. (and our refinements of it) is affected substantially by the number and selection of the tissue classes that are modeled explicitly, the corresponding defining parameters and, critically, the spatial distribution of tissues in the image. We present an initial exploration to choose automatically the number of classes and the associated parameters that give the best output. This requires us to define what is meant by "best output" and for this we propose the application of minimum entropy. The methods developed have been implemented and are illustrated throughout on simulated and real data (brain and breast MR).

Original publication

DOI

10.1109/42.585758

Type

Journal article

Journal

IEEE Trans Med Imaging

Publication Date

06/1997

Volume

16

Pages

238 - 251

Keywords

Algorithms, Brain, Breast, Female, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male