Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Many computer vision problems can be considered to consist of two main tasks: the extraction of image content descriptions and their subsequent matching. The appropriate choice of type and level of description is of course task dependent, yet it is generally accepted that the low-level or so called early vision layers in the Human Visual System are context independent. This paper concentrates on the use of low-level approaches for solving computer vision problems and discusses three inter-related aspects of this: saliency; scale selection and content description. In contrast to many previous approaches which separate these tasks, we argue that these three aspects are intrinsically related. Based on this observation, a multiscale algorithm for the selection of salient regions of an image is introduced and its application to matching type problems such as tracking, object recognition and image retrieval is demonstrated.

Original publication




Journal article


International Journal of Computer Vision

Publication Date





83 - 105