Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We present a novel region-based curve evolution algorithm which has three primary contributions: (i) non-parametric estimation of probability distributions using the recently developed NP windows method; (ii) an inequality-constrained least squares method to model the image histogram with a mixture of nonparametric probability distributions; and (iii) accommodation of the partial volume effect, which is primarily due to low resolution images, and which often poses a significant challenge in medical image analysis (our primary application area). We first approximate the image intensity histogram as a mixture of non-parametric probability density functions (PDFs), justifying its use with respect to medical image analysis. The individual densities in the mixture are estimated using the recent NP windows PDF estimation method, which builds a continuous representation of discrete signals. A Bayesian framework is then formulated in which likelihood probabilities are given by the non-parametric PDFs and prior probabilities are calculated using an inequality constrained least squares method. The non-parametric PDFs are then learnt and the segmentation solution is spatially regularised using a level sets framework. The log ratio of the posterior probabilities is used to drive the level set evolution. As background to our approach, we recall related developments in level set methods. Results are presented for a set of synthetic and natural images as well as simulated and real medical images of various anatomical organs. Results on a range of images show the effectiveness of the proposed algorithm. © 2009 Springer Science+Business Media, LLC.

Original publication




Journal article


International Journal of Computer Vision

Publication Date





52 - 68