Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The vast majority of corner and edge detectors measure image intensity gradients in order to estimate the positions and strengths of features. However, many of the most popular intensity gradient estimators are inherently and significantly anisotropic. In spite of this, few algorithms take the anisotropy into account, and so the set of features uncovered is typically sensitive to rotations of the image, compromising recognition, matching (e.g. stereo), and tracking. We introduce an effective technique for removing unwanted anisotropies from analytical gradient estimates, by measuring local intensity gradients in four directions rather than the more traditional two. In experiments using real image data, our algorithm reduces the gradient anisotropy associated with conventional analytical gradient estimates by up to 85%, yielding more consistent feature topologies.

Type

Conference paper

Publication Date

01/01/1996

Pages

652 - 659