Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The design of nanoparticles that can selectively perform multiple roles is of utmost importance for the development of the next generation of nanoparticulate drug delivery systems. So far most research studies are focused on the customization of nanoparticulate carriers to maximize their drug loading, enhance their optical signature for tracking in cells or provide photo-responsive effects for therapeutic purposes. However, a vital requirement of the new generation of drug carriers must be the ability to deliver their payload selectively only to cells of interest rather than the majority of various cells in the vicinity. Here we show for the first time a new design of nanoparticulate drug carriers that can specifically distinguish different cell types based on their mRNA signature. These nanoparticles sense and efficiently kill model tumour cells by the delivery of an anti-cancer drug but retain their payload in cells lacking the specific mRNA target.

Original publication




Journal article



Publication Date





16857 - 16861


Antineoplastic Agents, Cell Line, Drug Carriers, Humans, Mesoderm, Nanoparticles, RNA, Messenger