Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The cellular transcription factor DRTF1/E2F is implicated in the control of early cell cycle progression due to its interaction with important regulators of cellular proliferation, such as pocket proteins (for example, the retinoblastoma tumour suppressor gene product), cyclins and cyclin-dependent kinase subunits. In mammalian cells DRTF1/E2F is a heterodimeric DNA binding activity which arises when a DP protein interacts with an E2F protein. Here, we report an analysis of DRTF1/E2F in Drosophila cells, and show that many features of the pathway which regulate its transcriptional activity are conserved in mammalian cells, such as the interaction with pocket proteins, binding to cyclin A and cdk2, and its modulation by viral oncoproteins. We show that a Drosophila DP protein which can interact co-operatively with E2F proteins is a physiological DNA binding component of Drosophila DRTF1/E2F. An analysis of the expression patterns of a Drosophila DP and E2F protein indicated that DmDP is developmentally regulated and in later embryonic stages preferentially expressed in proliferating cells. In contrast, the expression of DmE2F-1 in late stage embryos occurs in a restricted group of neural cells, whereas in early embryos it is widely expressed, but in a segmentally restricted fashion. Some aspects of the mechanisms which integrate early cell cycle progression with the transcription apparatus are thus conserved between Drosophila and mammalian cells. The distinct expression patterns of DmDP and DmE2F-1 suggest that the formation of DP/E2F heterodimers, and hence DRTF1/E2F, is subject to complex regulatory cues.


Journal article


J Cell Sci

Publication Date



108 ( Pt 9)


2945 - 2954


Amino Acid Sequence, Animals, Carrier Proteins, Cell Cycle, Cell Cycle Proteins, Cell Division, Cell Line, DNA, Complementary, DNA-Binding Proteins, Drosophila Proteins, Drosophila melanogaster, E2F Transcription Factors, Embryo, Nonmammalian, Genes, Insect, Genetic Code, Mammals, Molecular Sequence Data, Retinoblastoma Protein, Retinoblastoma-Binding Protein 1, Trans-Activators, Transcription Factors