Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2017 IEEE. 4D-PET reconstruction has the potential to significantly increase the signal-to-noise ratio in dynamic PET by fitting smooth temporal functions during the reconstruction. However, the optimal choice of temporal function remains an open question. A 4D-PET reconstruction algorithm using adaptive-knot cubic B-splines is proposed. Using realistic Monte-Carlo simulated data from a digital patient phantom representing an [18-F]-FMISO-PET scan of a non-small cell lung cancer patient, this method was compared to a spectral model based 4D-PET reconstruction and the conventional MLEM and MAP algorithms. Within the entire patient region the proposed algorithm produced the best bias-noise trade-off, while within the tumor region the spline- and spectral model-based reconstructions gave comparable results.

Original publication

DOI

10.1109/ISBI.2017.7950729

Type

Conference paper

Publication Date

15/06/2017

Pages

1189 - 1192