Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The mechanism by which the recently identified DNA modification 5-formylcytosine (fC) is recognized by epigenetic writer and reader proteins is not known. Recently, an unusual DNA structure, F-DNA, has been proposed as the basis for enzyme recognition of clusters of fC. We used NMR and X-ray crystallography to compare several modified DNA duplexes with unmodified analogs and found that in the crystal state the duplexes all belong to the A family, whereas in solution they are all members of the B family. We found that, contrary to previous findings, fC does not significantly affect the structure of DNA, although there are modest local differences at the modification sites. Hence, global conformation changes are unlikely to account for the recognition of this modified base, and our structural data favor a mechanism that operates at base-pair resolution for the recognition of fC by epigenome-modifying enzymes.

Original publication




Journal article


Nat Struct Mol Biol

Publication Date





544 - 552


Crystallography, X-Ray, Cytosine, DNA, Magnetic Resonance Spectroscopy, Nucleic Acid Conformation