Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Exonuclease 1 (EXO1) is a candidate gene for colorectal tumor susceptibility because it is believed to play a role in mismatch repair. There have been several studies investigating the role of EXO1 in mismatch repair but few investigating its role in causing clinical disease. In one recent study, germline variants of EXO1 were reported to be associated with predisposition to colorectal cancer in families with phenotypes similar to hereditary nonpolyposis colon cancer (HNPCC). We recently identified nine individuals from two British families with multiple cutaneous and uterine leiomyomatosis with independently arising heterozygous germline deletions of 1q42.3 approximately q43 encompassing not only FH, the multiple leiomyomatosis-associated gene, but also several flanking genes, including EXO1. We investigated these families for any indication of predisposition to colorectal cancer or other HNPCC spectrum cancers by means of detailed questionnaires, interviews, and examination of EXO1-null skin leiomyomata for microsatellite instability (MSI). No individual in these families had developed colorectal cancer or known colorectal adenomas, and none had any symptoms warranting gastrointestinal or other investigation. EXO1-null tumors showed no evidence of MSI. This study questions the functional significance of previously reported variants of EXO1 reported in HNPCC-like families and suggests that in humans there may be other as yet undiscovered proteins that have exonuclease function overlapping with that of EXO1 in DNA mismatch repair. Also of interest is the absence of phenotypic abnormality apart from multiple leiomyomatosis in any deletion carrier even though the adjacent genes RGS7, KMO, CHML, and OPN3 were also deleted.

Original publication




Journal article


Cancer Genet Cytogenet

Publication Date





121 - 127


Adult, Aged, Colorectal Neoplasms, DNA Repair Enzymes, Exodeoxyribonucleases, Female, Genomic Instability, Genotype, Haplotypes, Humans, In Situ Hybridization, Fluorescence, Male, Microsatellite Repeats, Middle Aged, Pedigree, Sequence Deletion