Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Priming of naive CD8+ and CD4+ T cells by dendritic cells (DCs) requires effective antigen presentation on both MHC class I and II molecules. We have developed a novel technology to use recombinant overlapping peptides (ROP) that stimulate both CD8+ and CD4+ T cell immune responses. The single chain protein of a ROP is made up of overlapping peptides linked by the target sequence (LRMK) for cathepsin S, a protease found in the endosomes of DCs. We designed synthetic genes encoding ROPs derived from ovalbumin (OVA), tuberculosis protein (CFP10-ESAT6), human papilloma virus (HPV) protein (E7) and survivin, a protein commonly over-expressed in tumour cells. An epitope from ROP-OVA was cross-presented and detected by a CD8+ T cell receptor-like antibody (TCR like Ab). Human DCs pulsed with ROP-survivin activated CD8+ T cells. CD4-low PBMCs from HIV and TB co-infected patients recognized ROP-CFP10-ESAT6 compared to a soluble form of the antigen. Immunization of mice with ROP-survivin or ROP-HPV-E7 generated specific cellular immune responses and protected mice from inoculation with melanoma B16 cells expressing survivin or HPV-E7 proteins. Together these data provide evidence to support ROP as a central component of a new platform for therapeutic vaccines and diagnostics.

Original publication

DOI

10.18632/oncotarget.20407

Type

Journal article

Journal

Oncotarget

Publication Date

29/09/2017

Volume

8

Pages

76516 - 76524

Keywords

antigen processing, cross-presentation, overlapping peptide, peptide immunization, vaccines