Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dinucleoside phosphoramidites containing a triazole internucleotide linkage flanked by locked nucleic acid (LNA) were synthesized and incorporated into oligonucleotides (ONs). ONs bearing both LNA and triazole at multiple sites were obtained and their biophysical properties including enzymatic stability and binding affinity for RNA and DNA targets were studied. t-LNAs with four incorporations of a dinucleoside monomer having LNA on either side of the triazole linkage bind to their RNA target with significantly higher affinity and greater specificity than unmodified oligonucleotides, and are remarkably stable to nuclease degradation. A similar but reduced effect on enzymatic stability and binding affinity was noted for LNA only on the 3'-side of the triazole linkage. Thus, by combining unnatural triazole linkages and LNA in one unit (t-LNA), we produced a promising class of ONs with reduced anionic charge and potential for antisense applications.

Original publication

DOI

10.1021/acsomega.8b01086

Type

Journal article

Journal

ACS Omega

Publication Date

30/06/2018

Volume

3

Pages

6976 - 6987