Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We describe an in vitro approach to assessing the potential genotoxicity of illuminated sunscreens. The photomutagenic sunscreen Padimate-O attacks DNA on illumination with simulated sunlight, producing strand breaks and lesions that are labile to N,N'-dimethylethylenediamine but few, if any, cyclobutane dimers or other direct photoproducts. The damage can be completely suppressed by the free radical quenchers Tris, ethanol, mannitol and dimethylsulfoxide, which is commonly used as a solvent in conventional photomutagenicity assays. Using a genetic reversion assay that depends on regenerating beta-galactosidase activity in photodamaged plasmids we find that GC base pairs are particularly susceptible to attack by Padimate-O.


Journal article


Photochem Photobiol

Publication Date





276 - 281


4-Aminobenzoic Acid, Base Sequence, DNA Damage, Free Radical Scavengers, Free Radicals, Molecular Sequence Data, Mutagenesis, Photochemistry, Plasmids, Sunscreening Agents, para-Aminobenzoates