Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The p53 tumor-suppressor gene encodes a nuclear phosphoprotein that arrests cell cycle progress at G1. It may facilitate DNA damage repair and is frequently mutated in many human tumors. Hodgkin disease, a malignant condition of the lymphoid system, is characterized by the presence of Reed-Sternberg cells and mononuclear variants (Hodgkin cells), whose etiology remains unknown. The large multinucleated Reed-Sternberg cells often comprise < 1% of the total cell population within a biopsy specimen and are thought to be the neoplastic component in an admixture of reactive cells. It has been shown in the large majority of cases that up to 60% of these multinucleated cells react with CM-1, an anti-p53 antibody. However, whether this "overexpression" of p53 protein reflects abnormality at the DNA level can no longer be assumed by immunocytochemistry alone. p53 from six Hodgkin disease-derived cell lines was examined by immunoprecipitation, polymerase chain reaction (PCR)-single-strand conformation polymorphism analysis, and sequencing. In one cell line, point mutations were identified in exons 5 and 8 of p53. Sequencing of cloned PCR products confirmed the mutations to be on different alleles. A strategy involving extraction of nuclei followed by enrichment by flow cytometry was used to determine whether p53 overexpression in the Reed-Sternberg cells from patient biopsy material was due to mutations in this gene. Single-strand conformation polymorphism revealed additional bands in the polyploid nuclear preparations, suggesting abnormalities, and sequence analysis confirmed the presence of point mutations.


Journal article


Proc Natl Acad Sci U S A

Publication Date





2817 - 2821


Base Sequence, Biopsy, Blotting, Western, Cell Nucleus, Codon, DNA Damage, DNA, Neoplasm, Genes, p53, Hodgkin Disease, Humans, In Situ Hybridization, Mitosis, Molecular Sequence Data, Mutation, Polymerase Chain Reaction, Reed-Sternberg Cells, Tumor Cells, Cultured