Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Bromodomain and extraterminal motif (BET) protein inhibition is a promising cancer treatment strategy, notably for targeting MYC- or BRD4-driven diseases. A first-in-human study investigated the safety, pharmacokinetics, maximum tolerated dose and recommended phase II dose of the BET inhibitor BAY 1238097 in patients with advanced malignancies. MATERIAL AND METHODS: In this phase I, open-label, non-randomised, multicentre study, patients with cytologically or histologically confirmed advanced refractory malignancies received oral BAY 1238097 twice weekly in 21-day cycles using an adaptive dose-escalation design at a starting dose of 10 mg/week. Model-based dose-response analysis was performed to guide dose escalation. Safety, pharmacokinetics, pharmacodynamics and tumour response were evaluated. RESULTS: Eight patients were enrolled at three dose levels (10 mg/week, n = 3; 40 mg/week, n = 3; 80 mg/week, n = 2). Both patients receiving 80 mg/week had dose-limiting toxicities (DLTs) (grade 3 vomiting, grade 3 headache and grade 2/3 back pain). The most common adverse events were nausea, vomiting, headache, back pain and fatigue. Pharmacokinetic analysis indicated a linear dose response with increasing dose. Two patients displayed prolonged stable disease; no responses were observed. Biomarker evaluation of MYC and HEXIM1 expression demonstrated an emerging pharmacokinetic/pharmacodynamic relationship, with a trend towards decreased MYC and increased HEXIM1 expression in response to treatment. CONCLUSION: The study was prematurely terminated because of the occurrence of DLTs at a dose below targeted drug exposure. Pharmacokinetic modelling indicated that an alternate dosing schedule whereby DLTs could be avoided while reaching efficacious exposure was not feasible. Registration number: NCT02369029.

Original publication

DOI

10.1016/j.ejca.2018.12.020

Type

Journal article

Journal

Eur J Cancer

Publication Date

31/01/2019

Volume

109

Pages

103 - 110

Keywords

BAY 1238097, BET inhibitor, Clinical trial, Drug-related side effects and adverse reactions, Epigenetics, Myc, Neoplasms, Pharmacokinetics, Phase I