Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cellular senescence has emerged as a biological response to two major pathophysiological states of our being: cancer and aging. In the course of the transformation of a normal cell to a cancerous cell, senescence is frequently induced to suppress tumor development. In aged individuals, senescence is found in cells that have exhausted their replication potential. The similarity in these responses suggests that understanding how senescence is mediated can provide insight into both cancer and aging. One environmental factor that is implicated in both of these states is tissue hypoxia, which increases with aging and can inhibit senescence. Hypoxia is particularly important in normal physiology to maintain the stem cell niche; but at the same time, hypoxic inhibition of an essential tumor suppressor response can theoretically contribute to cancer initiation.

Original publication




Journal article


Mol Cancer Res

Publication Date





538 - 544


Aging, Cell Cycle, Cell Hypoxia, Cellular Senescence, Genes, Tumor Suppressor, Humans, Neoplasms, Oxidative Stress, Oxygen, Reactive Oxygen Species, Tumor Suppressor Protein p53, Tumor Suppressor Proteins