Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Toxoplasma gondii is an intracellular protozoan parasite that can cause devastating disease in fetuses and immune-compromised individuals. We previously reported that the alpha subunit of the host cell transcription factor, hypoxia-inducible factor-1 (HIF-1), is up-regulated by infection and necessary for Toxoplasma growth. Under basal conditions, HIF-1alpha is constitutively expressed but rapidly targeted for proteasomal degradation after two proline residues are hydroxylated by a family of prolyl hydroxylases (PHDs). The PHDs are alpha-ketoglutarate-dependent dioxygenases that have low K(m) values for oxygen, making them important cellular oxygen sensors. Thus, when oxygen levels decrease, HIF-1alpha is not hydroxylated, and HIF-1 is activated. How Toxoplasma activates HIF-1 under normoxic conditions remains unknown. Here, we report that Toxoplasma infection increases HIF-1alpha stability by preventing HIF-1alpha prolyl hydroxylation. Infection significantly decreases PHD2 abundance, which is the key prolyl hydroxylase for regulating HIF-1alpha. The effects of Toxoplasma on HIF-1alpha abundance and prolyl hydroxylase activity require activin-like receptor kinase signaling. Finally, parasite growth is severely diminished when signaling from this family of receptors is inhibited. Together, these data indicate that PHD2 is a key host cell factor for T. gondii growth and represent a novel mechanism by which a microbial pathogen subverts host cell signaling and transcription to establish its replicative niche.

Original publication

DOI

10.1074/jbc.M110.147041

Type

Journal article

Journal

J Biol Chem

Publication Date

27/08/2010

Volume

285

Pages

26852 - 26860

Keywords

Activin Receptors, Type I, Animals, HeLa Cells, Humans, Hydroxylation, Hypoxia-Inducible Factor 1, alpha Subunit, Hypoxia-Inducible Factor-Proline Dioxygenases, Oxygen, Procollagen-Proline Dioxygenase, Proteasome Endopeptidase Complex, Protein Stability, Toxoplasma, Toxoplasmosis