Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hypoxia inducible factors (HIFs) regulate a variety of genes to prepare cells to adapt and survive under a hypoxic environment. Recently, microRNAs (miRNAs) have emerged as a new class of genes regulated by HIFs in response to hypoxia, of which miR-210 is the most consistently and predominantly upregulated miRNA. Functional studies have demonstrated that miR-210 is a versatile gene that regulates many aspects of hypoxia pathways, both in physiological and malignant conditions. Here, we summarize recent findings on the mechanism of hypoxia regulation of miR-210 expression and its multifaceted biological functions in normal physiological and malignant conditions, and discuss the challenges we face in elucidating the biological functions of miR-210 and exploring its potential use for therapeutics.

Original publication

DOI

10.1016/j.molmed.2010.03.004

Type

Journal article

Journal

Trends Mol Med

Publication Date

05/2010

Volume

16

Pages

230 - 237

Keywords

Animals, Humans, Hypoxia, MicroRNAs, Models, Biological, Signal Transduction