Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tumor hypoxia is a feature common to almost all solid tumors due to malformed vasculature and inadequate perfusion. Tumor cells have evolved mechanisms that allow them to respond and adapt to a hypoxic microenvironment. The hypoxia-inducible transcription factor (HIF) family is comprised of oxygen-sensitive alpha (alpha) subunits that respond rapidly to decreased oxygen levels and oxygen-insensitive beta (beta) subunits. HIF binds to specific recognition sequences in the genome and increases the transcription of genes involved in a variety of metabolic and enzymatic pathways that are necessary for cells to respond to an oxygen-poor environment. The critical role of this family of transcriptional regulators in maintaining oxygen homeostasis is supported by multiple regulatory mechanisms that allow the cell to control the levels of HIF as well as its transcriptional activity. This review will focus on how the transcriptional activity of HIF is studied and how it can be exploited for cancer therapy.

Original publication




Journal article


Methods Enzymol

Publication Date





323 - 345


Animals, Gene Expression, Genetic Techniques, Humans, Hypoxia-Inducible Factor 1, Mice, Mice, Knockout, Neoplasms