Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tumor angiogenesis, the development of new blood vessels during malignant progression, is a regulated process that has both genetic and physiological controls. Physiologically, angiogenesis is stimulated by decreases in tissue oxygenation (i.e., hypoxia). We investigated the effect of hypoxia on the expression of two angiogenic factors reported to be genetically regulated by the p53 tumor suppressor gene: (a) the angiogenic inhibitor thrombospondin 1 (TSP-1); and (b) the angiogenic inducer vascular endothelial growth factor (VEGF). Analysis of rodent cells that differ in their p53 genotype (p53+/+ or p53-/-) indicated that in vitro exposure to hypoxia simultaneously suppressed TSP-1 and induced VEGF expression, regardless of the p53 genotype. On transformation of these cells with E1A and oncogenic H-ras, the basal level of TSP-1 expression was strongly diminished, whereas that of VEGF could still be induced by hypoxia. Consistent with these in vitro findings, sections of tumors derived from the transformed p53+/+ and p53-/- cells showed that VEGF protein overlapped with regions of hypoxia, whereas TSP-1 protein was below the limits of detection in tumor tissue. Using a panel of normal/immortalized and transformed human cells, it was found that the ability of hypoxia to inhibit TSP-1 expression depends on the cell type and/or the degree of transformation. In contrast, VEGF expression was induced by hypoxia in all of the human cell types examined. Together, these findings suggest that hypoxic and oncogenic signals could interact in the tumor microenvironment to inhibit TSP-1 and induce VEGF expression, promoting the switch to the angiogenic phenotype.

Type

Journal article

Journal

Clin Cancer Res

Publication Date

07/2000

Volume

6

Pages

2941 - 2950

Keywords

Animals, Carcinoma, Squamous Cell, Cell Division, Cell Hypoxia, Cells, Cultured, Endothelial Growth Factors, Female, Gene Expression Regulation, Genes, p53, Humans, Lymphokines, Mice, Mice, SCID, Thrombospondin 1, Transfection, Tumor Suppressor Protein p53, Uterine Cervical Neoplasms, Vascular Endothelial Growth Factor A, Vascular Endothelial Growth Factors, Xenograft Model Antitumor Assays