Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The isolation of human adrenal capillary endothelial (HACE) cells without resort to fluorescence activated cell sorting is described, together with their properties in culture. HACE cells were isolated by plating collagenase digests at high dilution in the presence of endothelial cell growth supplement, followed by clonal selection of endothelial colonies. HACE cells exhibit a typical endothelial 'cobblestone' morphology at confluence and formed 'tubes' when seeded onto 'Matrigel'. They are positive for human MHC1, and the endothelial markers ENDOCAM (CD31) and weakly CD34, they also take up dil-acetyl low density lipoprotein but are negative for Factor VIII. Their growth is strongly stimulated by FGF and inhibited by TGF-beta I. Like their much studied bovine counterparts they are robust in culture, retaining the properties described up to senescence. HACE cells provide a readily available alternative to human umbilical vein endothelial cells in that they are easily isolated pure and in quantity. They should be particularly useful in studies where human capillary, as opposed to large vessel endothelium, is required.


Journal article


Biochem Biophys Res Commun

Publication Date





903 - 908


Adrenal Glands, Antigens, CD, Antigens, Differentiation, Myelomonocytic, Biomarkers, Capillaries, Cell Division, Cell Separation, Cell Survival, Cells, Cultured, Culture Techniques, DNA Replication, Endothelium, Vascular, Fibroblast Growth Factors, Humans, Platelet Endothelial Cell Adhesion Molecule-1, Transforming Growth Factor beta