Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

An increasing body of evidence indicates that glutathione S-transferases play a role in the intrinsic and acquired resistance of tumours to anticancer drugs. In view of the wide use of tumour cell lines to understand the factors which confer either sensitivity or resistance to chemotherapeutic agents we have determined glutathione S-transferase (GST) activity and isozyme composition in nine human cell lines. These data have been compared with the values obtained in solid tumours. In most cases overall GST activity was higher in the tumours than in the cell lines. This was most pronounced for the breast tumour samples relative to MCF7 cell line. The pi class GST subunit was present at similar concentration in the cell lines and the tumours, and in most cases was the most abundant subunit present. The alpha and mu class GST were expressed in most of the cell lines but at much lower concentration than the pi class subunit. Also considerable variability particularly in the expression of the mu subunits was observed. This was also the case for the expression of these subunits in the solid tumour samples. The levels of these GSTs (when expressed) in the solid tumours was invariably higher than that observed in the cell lines. There are therefore several similarities but also some significant differences in GST expression in solid tumours and cell lines. Whether the differences are because expression is lost during the generation of the cell lines or whether it reflects the individuality of human tumours remains to be clearly established.

Original publication




Journal article


Br J Cancer

Publication Date





327 - 331


Cell Line, Glutathione Transferase, Humans, Isoenzymes, Tumor Cells, Cultured