Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Four of the genes that encode gel-forming mucins, which are major components of the mucus layer protecting many epithelial surfaces, are clustered at chromosome 11p15.5 and show both cell- and tissue-specific expression patterns. We aimed to determine whether the individual genes were coordinately regulated by mechanisms involving higher order chromatin structure. CCCTC-binding factor (CTCF) sites were predicted in silico and CTCF occupancy then evaluated by chromatin immunoprecipitation. CTCF was found at many sites across the gene cluster, and its binding was correlated with mucin gene expression. Next, siRNA-mediated depletion of CTCF was shown to increase MUC2 expression in A549 lung carcinoma cells and both MUC6 and MUC5AC expression in LS180 colon carcinoma cells. These changes correlated with loss of CTCF binding at multiple sites, although others retained occupancy. In cells actively expressing the mucins, the gene cluster was shown by chromosome conformation capture to form looped three-dimensional structures with direct interactions between the MUC2 promoter region, regions 30 kb 5' to it, close to the MUC6 promoter and others near the 3' end of MUC5AC, >170 kb away. Finally, to demonstrate the importance of CTCF binding to mucin gene expression, Calu-3 lung carcinoma cells were exposed to lipopolysaccharide (LPS). LPS increased the expression of MUC2 and MUC5AC and reduced MUC5B. CTCF occupancy was concurrently depleted at specific binding sites close to these genes. These data suggest that CTCF binding and cell type-specific long-range interactions across the 11p15.5 gene cluster are critical mechanisms for coordinating gel-forming mucin gene expression.

Original publication




Journal article


J Biol Chem

Publication Date





6717 - 6725


CCCTC-Binding Factor, Cell Line, Tumor, Chromosomes, Human, Pair 11, Gene Expression Regulation, Gene Knockdown Techniques, HEK293 Cells, Humans, Lipopolysaccharides, Mucins, Multigene Family, Repressor Proteins, Response Elements