Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The MUC6 mucin has a critical protective function in the normal stomach, pancreas and duodenum and is aberrantly expressed during the progression of some gastrointestinal cancers. Our aim was to determine whether MUC6 contributes to the etiology or progression of pancreatic cancer and elucidate the molecular basis of its involvement. Expression of MUC6 glycoprotein was examined in pancreatic cancer tissues by immunofluorescence and loss of MUC6 was observed. Next, to determine whether MUC6 inhibits tumor growth and metastasis by altering cell adhesion and invasion, recombinant MUC6 cDNA and separate MUC6 N-terminal and C-terminal domains were transfected into pancreatic, colorectal and breast cancer cell lines. The recombinant N- and C-terminal proteins were each seen to oligomerize under non-reducing conditions. Overexpression of both domains of the MUC6 glycoprotein significantly inhibited cell adhesion to matrix proteins (collagen I, collagen IV, fibronectin and laminin) in LS 180 but not in PANC-1 cells. Moreover, the N- and C-terminal domains of MUC6 inhibited invasion of both LS 180 and PANC-1 cells by 40% and 70%, respectively, in comparison with controls. These results suggest that MUC6 may inhibit invasion of tumor cells through the basement membrane of the pancreatic duct and slow the development of infiltrating carcinoma. © 2011 Elsevier Inc.

Original publication

DOI

10.1016/j.yexcr.2011.07.021

Type

Journal article

Journal

Experimental Cell Research

Publication Date

01/01/2011

Volume

317

Pages

2408 - 2419