Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Alport syndrome (AS), an X-linked kidney disorder, has been shown to be caused by mutations in the gene for the alpha 5-chain of type IV collagen (COL4A5), which maps to Xq22. On the basis of the results of conventional Southern blot analysis of AS patient DNAs, we employed pulsed-field gel electrophoresis to characterize further three gene rearrangements at the 3'-end of alpha 5(IV). We were able to construct long-range restriction maps for all three of these patients and deduce the extent and nature of each rearrangement. One of these mutations is a 450-kb simple deletion that includes 12 kb of the alpha 5(IV) gene. A second mutation has been shown to be a direct duplication of 35 kb of alpha 5(IV) genomic DNA, and a third mutation involves a complex insertion/deletion event resulting in an overall loss of 25 kb.

Type

Journal article

Journal

Genomics

Publication Date

11/1992

Volume

14

Pages

624 - 633

Keywords

Chromosome Mapping, Collagen, Electrophoresis, Gel, Pulsed-Field, Endonucleases, Gene Rearrangement, Humans, Male, Nephritis, Hereditary, Restriction Mapping