Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Regulation of expression of the CFTR gene is poorly understood. Elements within the basal promoter of the gene do not fully explain CFTR expression patterns, suggesting that cis-regulatory elements are located elsewhere, either within the locus or in adjacent chromatin. We previously mapped DNase I hypersensitive sites (DHS) in 400 kb spanning the CFTR locus including a cluster of sites close to the 3'-end of the gene. Here we focus on a DHS at +6.8 kb from the CFTR translation end-point to evaluate its potential role in regulating expression of the gene. This DHS, which encompasses a consensus CTCF-binding site, was evident in primary human epididymis cells that express abundant CFTR mRNA. We show by DNase I footprinting and electophoretic mobility shift assays that the cis-regulatory element within this DHS binds CTCF in vitro. We further demonstrate that the element functions as an enhancer blocker in a well-established in vivo assay, and by using chromatin immunoprecipitation that it recruits CTCF in vivo. Moreover, we reveal that in primary epididymis cells, the +6.8 kb DHS interacts closely with the CFTR promoter, suggesting that the CFTR locus exists in a looped conformation, characteristic of an active chromatin hub.

Original publication




Journal article


Nucleic Acids Res

Publication Date





1086 - 1094


3' Flanking Region, Binding Sites, CCCTC-Binding Factor, Cells, Cultured, Chromatin, Cystic Fibrosis Transmembrane Conductance Regulator, DNA Footprinting, DNA-Binding Proteins, Deoxyribonuclease I, Enhancer Elements, Genetic, Epididymis, Humans, Insulator Elements, Male, Repressor Proteins