Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

With the increased use of next-generation sequencing generating large amounts of genomic data, gene expression signatures are becoming critically important tools for the interpretation of these data, and are poised to have a substantial effect on diagnosis, management, and prognosis for a number of diseases. It is becoming crucial to establish whether the expression patterns and statistical properties of sets of genes, or gene signatures, are conserved across independent datasets. Conversely, it is necessary to compare established signatures on the same dataset to better understand how they capture different clinical or biological characteristics. Here we describe how to use sigQC, a tool that enables a streamlined, systematic approach for the evaluation of previously obtained gene signatures across multiple gene expression datasets. We implemented sigQC in an R package, making it accessible to users who have knowledge of file input/output and matrix manipulation in R and a moderate grasp of core statistical principles. SigQC has been adopted in basic biology and translational studies, including, but not limited to, the evaluation of multiple gene signatures for potential clinical use as cancer biomarkers. This protocol uses a previously obtained signature for breast cancer metastasis as an example to illustrate the critical quality control steps involved in evaluating its expression, variability, and structure in breast tumor RNA-sequencing data, a different dataset from that in which the signature was originally derived. We demonstrate how the outputs created from sigQC can be used for the evaluation of gene signatures on large-scale gene expression datasets.

Original publication




Journal article


Nat Protoc

Publication Date





1377 - 1400


Biomarkers, Tumor, Databases, Genetic, Gene Expression Profiling, Genomics, High-Throughput Nucleotide Sequencing, Humans, Sequence Analysis, DNA, Software