Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Re-treatment, using megavoltage photon radiotherapy, can benefit carefully selected patients with new or recurrent tumours. Such re-treatments may involve the further exposure of tissues such as the brain or spinal cord. A time-dependent model has been developed, which incorporates data from all published radiobiological experiments concerned with the in vivo re-irradiation of the spinal cord using photons. It allows an estimation of the increasing recovery in tissue tolerance with elapsed time after the initial treatment course. In accordance with the experimental evidence, the recovery rate depends on the biological effective dose (BED) of the initial treatment. Various degrees of conservatism have been introduced in the model to allow for potential changes in CNS tissue tolerance due to patient age, chemotherapy, surgery etc. An estimation of the re-treatment dose-fractionation schedule is made easier by the use of a downloadable Graphical User Interface (GUI). Worked examples of its use are given forconventional photon (X-ray) based treatments, and also for protons, where relative biological effectiveness (RBE) considerations must be respected within the BED estimates. The model provides boundary conditions for clinical practice. The responsible clinician can choose to usemore 'forgiving' BED values and from this to calculate the re-irradiation dose-fractionation schedule. For protons, greater care is required sincethe inter-relationship between linear energy transfer (LET) and RBE can lead to significant over-dosage relative to accepted CNS tolerance doses, especially with the use of scanned proton beams. LET and RBE factors are important in order to deliver safe and effective re-treatment doses.

Original publication




Journal article


Phys Med

Publication Date



Proton therapy, Radiobiology, Radiotherapy, Spinal cord