Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genome Stability and Tumourigenesis


BRCA1 and BRCA2 genes are mutated in about a quarter of familial breast and ovarian cancers. However, familial cancers represent only a small fraction of all cancers (Figure 1). In recent years, whole genome sequencing of large number of human tumours revealed that a significant fraction of non-familial breast and ovarian cancers carry BRCA1and BRCA2 mutations and that these mutations are also found in other types of sporadic cancer (Figure 2). Importantly, triple negative breast cancers, associated with one of the most aggressive forms of the disease, are significantly enriched in BRCA1 and BRCA2 mutations.

  Genome Stability and Tumourigenesis_Figure 1

   Figure 1

Genome Stability and Tumourigenesis_Figure 2

     Figure 2

A conundrum regarding the breast cancer-promoting BRCA1 and BRCA2 gene mutations is that their introduction into normal cells causes cell cycle arrest and embryonic lethality, and not the rampant cell proliferation characteristic of tumours bearing the same mutations. One entry point into understanding this paradox is the key role of BRCA1 and BRCA2 proteins in facilitating accurate DNA replication by helping stalled forks to re-start (Figure 3). Consequently, cells with compromised BRCA1/2 function accumulate stalled replication forks, which, in turn, leads to replication-associated DNA damage. These pathological DNA lesions are lethal to normal cells, where DNA damage checkpoints and responses are functional. However, cancer cells lack DNA damage responses; they can proliferate and become tumourigenic in spite of DNA damage accumulation.


 Genome Stability and Tumourigenesis_Figure 3

Figure 3

Work conducted in my laboratory aims to unravel the mechanisms underlying replication failure in BRCA1/2-deficient cells and how this knowledge can be exploited for the development of novel treatments that could selectively kill tumour cells with compromised BRCA1/2 function. To achieve these goals, my laboratory is using experimental approaches that combine tissue culture, molecular biology and microscopy, with high-throughput technologies and bioinformatics (Figure 4).

Genome Stability and Tumourigenesis_Figure 4

                                                                                          Figure 4