Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dopamine transporter (DaT) SPECT can confirm dopaminergic deficiency in Parkinson's disease (PD) but remains costly and inaccessible. We investigated whether brief smartphone-based motor assessments could predict DaT scan results as a scalable alternative. Data from Oxford and Genoa cohorts included individuals with iRBD, PD, and controls. Machine learning models trained on smartphone-derived features classified DaT scan status and predicted striatal binding ratios, compared with MDS-UPDRS-III benchmarks. Among 100 DaT scans, the smartphone-only XGBoost model achieved AUC = 0.80, improving to 0.82 when combined with MDS-UPDRS-III (AUC's gender-corrected). A simpler logistic regression model performed better with MDS-UPDRS-III alone (AUC = 0.83) versus smartphone features, with slightly higher performance when combined (AUC = 0.85). Regression models predicted binding ratios with modest error (RMSE = 0.49, R² = 0.56). Gait, tremor, and dexterity features were most predictive. These findings support smartphone-based assessments complementing clinical evaluations, though larger independent validation remains essential.

Original publication

DOI

10.1038/s41746-025-02148-2

Type

Journal article

Journal

NPJ Digit Med

Publication Date

01/12/2025

Volume

8