Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Extensive genetic and epigenetic variegation has been demonstrated in many malignancies. Importantly, their interplay has the potential to contribute to disease progression and treatment resistance. To shed light on the complex relationships between these different sources of intra-tumour heterogeneity, we explored their relative contributions to the evolutionary dynamics of Acute Lymphoblastic Leukaemia (ALL) in children with Down syndrome, which has particularly poor prognosis. We quantified the tumour propagating potential of genetically distinct sub-clones using serial transplantation assays and SNP-arrays. While most leukaemias were characterized by a single dominant subclone, others were highly heterogeneous. Importantly, we provide clear and direct evidence that genotypes and phenotypes with functional relevance to leukemic progression and treatment resistance can co-segregate within the disease. Hence, individual genetic lesions can be restricted to well-defined cell immunophenotypes, corresponding to different stages of the leukemic differentiation hierarchy and varied proliferation potentials. As a result of this difference in fitness, which can be accurately quantified via competitive transplantation assays, matching diagnostic, post-treatment, and relapse leukaemias can be dominated by different genotypes, including pre-leukemic clones persisting throughout the disease progression and treatment. Intriguingly, plasticity also appears to be a temporally defined property that can segregate with genotype. These results suggest that Down Syndrome ALL should be viewed as a complex matrix of cells exhibiting genetic and epigenetic heterogeneity that foster extensive clonal evolution and competition. Therapeutic intervention reshapes this 'eco-system' and may provide the right conditions for the preferential expansion of selected compartments and subsequently relapse.

Original publication

DOI

10.1038/s41598-025-28779-9

Type

Journal article

Journal

Sci Rep

Publication Date

25/11/2025

Volume

15

Keywords

Humans, Down Syndrome, Precursor Cell Lymphoblastic Leukemia-Lymphoma, Child, Genotype, Genetic Association Studies, Phenotype, Child, Preschool, Male, Female, Polymorphism, Single Nucleotide, Infant, Disease Progression