Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Early findings from a study into longer-term damage amongst patients recovering from COVID-19 suggest that the use of cutting-edge scanning techniques may detect previously unseen lung damage.

Picture showing the effects in lung function in patients who have contracted COVID-19

Research by Oxford and Sheffield Universities is the first in Europe to use hyperpolarised xenon gas with MRI scanning to identify the impact on lung function as patients recover from COVID-19, when standard MR and CT scans may be normal.

Professor Fergus Gleeson, Professor of Radiology at the University of Oxford, is collaborating with Professor Jim Wild, Professor of MR Physics at the University of Sheffield, to investigate possible reasons for patients remaining short of breath following treatment for COVID-19 pneumonia, even after discharge.

They are working with an initial group of 40 patients in Oxford and Sheffield over the next six months. So far, the hyperpolarised xenon MRI technique has identified weakened lung function in all patients who have taken part in the study – this damage to lungs from COVID-19 is not visible on a standard MRI or CT scan.

Professor Gleeson, a consultant radiologist at Oxford University Hospitals NHS Foundation Trust and the University of Oxford's head of academic radiology, said: "We may be getting an insight into why some patients have symptoms long after they have left hospital, and when other tests are normal. This may help us identify patients that may potentially benefit from treatment even after discharge, for example with steroids or other therapies."

Hyperpolarised xenon MRI is is unique in its ability to measure gas transfer in the lungs with imaging and identify where the damage caused by COVID-19 pneumonia has occurred.

The study follows up patients for six months after leaving hospital. Early data suggests that the ability to transfer oxygen from the lungs into the blood stream when breathing is visibly impaired for some time, even after hospital discharge following COVID-19 pneumonia.

This reduction in the function of the lungs can be detected in this research study, and may be an explanation for some patients experiencing persistent symptoms even with seemingly 'normal' results from standard GP and hospital tests.

The striking early results have resulted in discussions to expand the study to involve more patients in the community, to identify the overall prevalence of lung damage and the speed of recovery from this virus. Prof Gleeson is now working with clinicians providing follow-up services for patients post COVID-19 pneumonia to identify further patients feeling long-term ill health after COVID-19 who may wish to join the study.

Professor Wild, Head of Imaging and NIHR Research Professor of Magnetic Resonance Physics at University of Sheffield, said: "Hyperpolarised xenon MRI offers a unique means of imaging impairment to oxygen uptake in the lungs caused by COVID-19 infection and its after effects. In other fibrotic lung diseases we have shown the methods to be very sensitive to this impairment and we hope the work can help understand COVID-19 lung disease."

The study is funded by the NCIMI and the University of Oxford, and supported by the NIHR Oxford Biomedical Research Centre. It will be linked to the big national clinical follow-up study PHOSP-COVID.


If you are interested in this study, please contact ncimi@oncology.ox.ac.uk

Similar stories

Further funding secured to hunt out cancer using innovative radiotherapy techniques

Initial success leads to new award for Oxford researcher pushing forward new cancer-hunting radiotherapy despite lockdown.

Reprogramming tumour cells using an antimalarial drug

Results from the ATOM clinical trial at the University of Oxford have shown that the anti-malarial drug Atovaquone can reduce very low oxygen tumour environments. This has the potential to make cancers behave less aggressively and to improve the impact of everyday cancer treatments.

Professor Sibson secures further MRC DPFS funding

Prof. Sibson together with her co-applicants Prof. Anthony, Dr Campbell and Prof. Middleton have now been awarded a second MRC DPFS grant, for £3.3 million, to acquire further preclinical data to support the case for clinical translation, to develop the mutTNF production for human use and to undertake pre-clinical toxicology.

Oxfordshire-based SCAN pathway wins BMJ award

A pathway designed to investigate individuals with non-specific but concerning symptoms of cancer wins the BMJ Awards 2020 Cancer Care Team of the Year.

Tackling the serious side effects of cancer treatment in an ageing population

Prof. Anne Kiltie and her team discuss their important work into the effects of radiosensitisation on ageing cancer patients with the CRUK Science Blog.