Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This paper outlines the process by which a medical gamma camera can be utilised to support assessment of internal radionuclides for the public. While hospital based gamma cameras are able to detect photopeaks, they are often limited to an energy range of 40-540 keV. However, radionuclides with photopeak energies above 540 keV can still be detected as the partial collection of photon energy increases the count rate at lower energies. By combining extensive mathematical modelling with empirical calibration of multiple gamma cameras it is possible to develop a linear correlation between the efficiency of counting point sources and the overall counting efficiency for the camera. Once established, a simple protocol can be used to characterise any gamma camera, using optimal system settings, and hence generate a system efficiency with sufficient accuracy to allow the camera to be used in a triage process to committed effective doses of 2 mSv. .

Original publication

DOI

10.1088/1361-6498/ad82f5

Type

Journal article

Journal

J Radiol Prot

Publication Date

03/10/2024

Keywords

Gamma camera, Internal dose, Radiation emergency, Radiological triage