Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Regulation of the mRNA life cycle is central to gene expression control and determination of cell fate. miRNAs represent a critical mRNA regulatory mechanism, but despite decades of research, their mode of action is still not fully understood. RESULTS: Here, we show that eIF4A2 is a major effector of the repressive miRNA pathway functioning via the Ccr4-Not complex. We demonstrate that while DDX6 interacts with Ccr4-Not, its effects in the mechanism are not as pronounced. Through its interaction with the Ccr4-Not complex, eIF4A2 represses mRNAs at translation initiation. We show evidence that native eIF4A2 has similar RNA selectivity to chemically inhibited eIF4A1. eIF4A2 exerts its repressive effect by binding purine-rich motifs which are enriched in the 5'UTR of target mRNAs directly upstream of the AUG start codon. CONCLUSIONS: Our data support a model whereby purine motifs towards the 3' end of the 5'UTR are associated with increased ribosome occupancy and possible uORF activation upon eIF4A2 binding.

Original publication

DOI

10.1186/s13059-019-1857-2

Type

Journal article

Journal

Genome Biol

Publication Date

02/12/2019

Volume

20

Keywords

5' Untranslated Regions, DEAD-box RNA Helicases, Gene Expression Regulation, Humans, MicroRNAs, Receptors, CCR4, Transcription Factors