Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This narrative review presents deep learning-based strategies for generating synthetic 3D CT-like images from biplanar or multiplanar 2D X-ray data. Current limitations of conventional CT imaging are discussed, hence emphasizing the potential of synthetic CT reconstruction as an alternative technique in certain scenarios. Previous non deep learning approaches for 3D reconstruction from 2D X-rays are presented, indicating their weaknesses and thus pointing out the potential benefits of deep learning techniques. Convolutional neural networks (CNNs), generative adversarial networks (GANs), and conditional diffusion processing (CDP) are introduced, as they demonstrate great potential for synthetic CT generation in multiple studies over the last few years. The review further presents the potential clinical applications, existing challenges and latest research advancements of deep learning strategies for 3D reconstruction from 2D X-rays.

Original publication

DOI

10.23736/S0390-5616.25.06506-3

Type

Journal article

Journal

Journal of Neurosurgical Sciences

Publication Date

01/08/2025

Volume

69

Pages

350 - 361