Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Advanced ovarian cancers are initially responsive to combinatorial chemotherapy with platinum drugs and taxanes but, in most cases, develop drug resistance. We recently showed that, in vitro, hepatocyte growth factor (HGF) enhances death of human ovarian cancer cell lines treated with cisplatin (CDDP) and paclitaxel. The present study addresses whether in vivo HGF makes ovarian carcinoma cells more responsive to these chemotherapeutics. EXPERIMENTAL DESIGN: Using Lentiviral vectors carrying the HGF transgene, we transduced SK-OV-3 and NIH:OVCAR-3 ovarian carcinoma cell lines to obtain stable autocrine and paracrine HGF receptor activation. In vitro, we assayed growth, motility, invasiveness, and the response to CDDP and paclitaxel of the HGF-secreting bulk unselected cell populations. In vivo, we tested the cytotoxic effects of the drugs versus s.c. tumors formed by the wild-type and HGF-secreting cells in immunocompromised mice. Tumor-bearing mice were treated with CDDP (i.p.) and paclitaxel (i.v.), combined in different schedules and doses. RESULTS: In vitro, HGF-secreting cells did not show altered proliferation rates and survival but were strongly sensitized to the death triggered by CDDP and paclitaxel, alone or in combination. In vivo, we found a therapeutic window in which autocrine/paracrine HGF made tumors sensitive to low doses of the drugs, which were ineffective on their own. CONCLUSIONS: These data provide the proof-of-concept that in vivo gene therapy with HGF might be competent in sensitizing ovarian cancer cells to conventional chemotherapy.

Original publication

DOI

10.1158/1078-0432.CCR-06-1915

Type

Journal article

Journal

Clin Cancer Res

Publication Date

01/04/2007

Volume

13

Pages

2191 - 2198

Keywords

Animals, Antineoplastic Combined Chemotherapy Protocols, Apoptosis, Blotting, Western, Cell Line, Tumor, Cisplatin, Drug Resistance, Neoplasm, Female, Flow Cytometry, Genetic Therapy, Genetic Vectors, Hepatocyte Growth Factor, Humans, In Vitro Techniques, Lentivirus, Mice, Ovarian Neoplasms, Paclitaxel, Reverse Transcriptase Polymerase Chain Reaction, Transgenes