Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: CEA TCB is a novel IgG-based T-cell bispecific (TCB) antibody for the treatment of CEA-expressing solid tumors currently in phase I clinical trials (NCT02324257). Its format incorporates bivalent binding to CEA, a head-to-tail fusion of CEA- and CD3e-binding Fab domains and an engineered Fc region with completely abolished binding to FcγRs and C1q. The study provides novel mechanistic insights into the activity and mode of action of CEA TCB. EXPERIMENTAL DESIGN: CEA TCB activity was characterized on 110 cell lines in vitro and in xenograft tumor models in vivo using NOG mice engrafted with human peripheral blood mononuclear cells. RESULTS: Simultaneous binding of CEA TCB to tumor and T cells leads to formation of immunologic synapses, T-cell activation, secretion of cytotoxic granules, and tumor cell lysis. CEA TCB activity strongly correlates with CEA expression, with higher potency observed in highly CEA-expressing tumor cells and a threshold of approximately 10,000 CEA-binding sites/cell, which allows distinguishing between high- and low-CEA-expressing tumor and primary epithelial cells, respectively. Genetic factors do not affect CEA TCB activity confirming that CEA expression level is the strongest predictor of CEA TCB activity. In vivo, CEA TCB induces regression of CEA-expressing xenograft tumors with variable amounts of immune cell infiltrate, leads to increased frequency of activated T cells, and converts PD-L1 negative into PD-L1-positive tumors. CONCLUSIONS: CEA TCB is a novel generation TCB displaying potent antitumor activity; it is efficacious in poorly infiltrated tumors where it increases T-cell infiltration and generates a highly inflamed tumor microenvironment. Clin Cancer Res; 22(13); 3286-97. ©2016 AACR.

Original publication

DOI

10.1158/1078-0432.CCR-15-1696

Type

Journal article

Journal

Clin Cancer Res

Publication Date

01/07/2016

Volume

22

Pages

3286 - 3297

Keywords

Animals, Antibodies, Bispecific, Antibodies, Monoclonal, Antineoplastic Agents, Binding Sites, CD3 Complex, Carcinoembryonic Antigen, Cell Line, Tumor, Female, Humans, Immunotherapy, Lymphocyte Activation, Mice, Neoplasms, Receptors, Fc, T-Lymphocytes, Xenograft Model Antitumor Assays