Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

DNA double-strand breaks (DSBs), arising during normal DNA metabolism or following exposure to mutagenic agents such as ionizing radiation can lead to chromosomal rearrangements and genome instability, and are potentially lethal if unrepaired. Therefore, understanding the mechanisms of DSB repair and misrepair, and identifying the factors involved in these processes is of biological as well as medical interest. Here we describe a DSB assay in Schizosaccharomyces pombe that can be used to identify and quantify different repair, misrepair, and failed repair events resulting from a site-specific DSB within the context of a nonessential minichromosome, Ch16 This assay can be used to determine the contribution of most genes or genetic backgrounds to DSB repair and genome stability, and can also provide mechanistic insights into their function.

Original publication

DOI

10.1101/pdb.prot092031

Type

Journal article

Journal

Cold Spring Harb Protoc

Publication Date

02/04/2018

Volume

2018