Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Germline mutations of the LKB1 (STK11) serine/threonine kinase gene (chromosome 19p13.3) cause Peutz-Jeghers syndrome, which is characterised by hamartomas of the gastrointestinal tract and typical pigmentation. Peutz-Jeghers syndrome carries an overall risk of cancer that may be up to 20 times that of the general population. Here, we report the results of a screen for germline LKB1 mutations by DNA sequencing in 12 Peutz-Jeghers patients (three sporadic and nine familial cases). Mutations were found in seven (58%) cases, in exons 1, 2, 4, 6, and 9. Five of these mutations, two of which are identical, are predicted to lead to a truncated protein (three frameshifts, two nonsense changes). A further mutation is an in frame deletion of 6 bp, resulting in a deletion of lysine and asparagine; the second of these amino acids is conserved between species. The seventh mutation is a missense change in exon 2, converting lysine to arginine, affecting non-conserved amino acids and of uncertain functional significance. Despite the fact that Peutz-Jeghers syndrome is usually an early onset disease with characteristic clinical features, predictive and diagnostic testing for LKB1 mutations will be useful for selected patients in both familial and non-familial contexts.

Type

Journal article

Journal

J Med Genet

Publication Date

05/1999

Volume

36

Pages

365 - 368

Keywords

AMP-Activated Protein Kinase Kinases, Adult, Base Sequence, DNA Mutational Analysis, Exons, Germ-Line Mutation, Humans, Peutz-Jeghers Syndrome, Protein Serine-Threonine Kinases