Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: The introduction of omics data and advances in technologies involved in clinical treatment has led to a broad range of approaches to represent clinical information. Within this context, patient stratification across health institutions due to omic profiling presents a complex scenario to carry out multi-center clinical trials. METHODS: This paper presents a standards-based approach to ensure semantic integration required to facilitate the analysis of clinico-genomic clinical trials. To ensure interoperability across different institutions, we have developed a Semantic Interoperability Layer (SIL) to facilitate homogeneous access to clinical and genetic information, based on different well-established biomedical standards and following International Health (IHE) recommendations. RESULTS: The SIL has shown suitability for integrating biomedical knowledge and technologies to match the latest clinical advances in healthcare and the use of genomic information. This genomic data integration in the SIL has been tested with a diagnostic classifier tool that takes advantage of harmonized multi-center clinico-genomic data for training statistical predictive models. CONCLUSIONS: The SIL has been adopted in national and international research initiatives, such as the EURECA-EU research project and the CIMED collaborative Spanish project, where the proposed solution has been applied and evaluated by clinical experts focused on clinico-genomic studies.

Original publication

DOI

10.1016/j.compbiomed.2017.06.005

Type

Journal article

Journal

Comput Biol Med

Publication Date

01/08/2017

Volume

87

Pages

179 - 186

Keywords

Biomedical terminologies, Clinical research informatics, Data integration, Diagnostic classifier, Gene expressions, Semantic interoperability, Breast Neoplasms, Female, Gene Expression, Humans, Semantics