Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Tumour resistance to methylating agents is linked to expression of the DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (ATase). There is considerable interest in improving the efficacy of O(6)-alkylating chemotherapy by prior depletion of ATase. We have tested the ability of a modified guanine base, O(6)-(4-bromothenyl)guanine (4BTG), to inactivate ATase and to enhance the anti-tumour effect of temozolomide in an animal model system. A375M human melanoma xenografts were established in the flanks of nude mice. ATase depletion after a single dose of 4BTG or O(6)-BG (20 mg/kg i.p.) was determined over a 24 hr period. Subsequently, we tested the effect of 4BTG (20 mg/kg i.p. daily) and/or temozolomide (80-175 mg/kg i.p. daily) over a 5-day schedule on tumour growth. 4BTG was an effective inactivator of ATase in tumour, producing complete depletion within 2 hr of dosing. Furthermore, it enhanced the tumour growth delay achieved with temozolomide, increasing the tumour quintupling time by 8.7 days (95% confidence interval 6.1-11.3 days, p < 0.0001). Whilst the delay in tumour growth was indistinguishable from that observed with O(6)-benzylguanine (O(6)-BG) and temozolomide, the 4BTG combination resulted in considerably less toxicity (0/9 vs. 2/9 deaths; 6.84% weight loss vs. 9.48%, p = 0.019). 4BTG is a potent inactivator of ATase and enhances the therapeutic ratio of temozolomide in this model system to a greater extent than O(6)-BG.

Type

Journal article

Journal

Int J Cancer

Publication Date

15/01/2000

Volume

85

Pages

248 - 252

Keywords

Adenosine Triphosphatases, Animals, Antineoplastic Agents, Alkylating, Antineoplastic Combined Chemotherapy Protocols, Dacarbazine, Drug Synergism, Enzyme Inhibitors, Guanine, Male, Melanoma, Mice, Mice, Nude, Neoplasm Transplantation, Temozolomide, Transplantation, Heterologous