Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Under normoxic conditions, hypoxia-inducible factor (HIF)-1α is rapidly degraded by 2 hydroxylases: prolyl hydroxylase (PHD) and factor-inhibiting HIF-1 (FIH). Because HIF-1α mediates the cardioprotective response to ischemic injury, its upregulation may be an effective therapeutic option for ischemic heart failure. METHODS AND RESULTS: PHD and FIH were cloned from mouse embryonic stem cells. The best candidate short hairpin (sh) sequences for inhibiting PHD isoenzyme 2 and FIH were inserted into novel, nonviral, minicircle vectors. In vitro studies after cell transfection of mouse C2C12 myoblasts, HL-1 atrial myocytes, and c-kit(+) cardiac progenitor cells demonstrated higher expression of angiogenesis factors in the double-knockdown group compared with the single-knockdown and short hairpin scramble control groups. To confirm in vitro data, shRNA minicircle vectors were injected intramyocardially after left anterior descending coronary artery ligation in adult FVB mice (n=60). Functional studies using MRI, echocardiography, and pressure-volume loops showed greater improvement in cardiac function in the double-knockdown group. To assess mechanisms of this functional recovery, we performed a cell trafficking experiment, which demonstrated significantly greater recruitment of bone marrow cells to the ischemic myocardium in the double-knockdown group. Fluorescence-activated cell sorting showed significantly higher activation of endogenous c-kit(+) cardiac progenitor cells. Immunostaining showed increased neovascularization and decreased apoptosis in areas of injured myocardium. Finally, western blots and laser-capture microdissection analysis confirmed upregulation of HIF-1α protein and angiogenesis genes, respectively. CONCLUSIONS: We demonstrated that HIF-1α upregulation by double knockdown of PHD and FIH synergistically increases stem cell mobilization and myocardial angiogenesis, leading to improved cardiac function.

Original publication

DOI

10.1161/CIRCULATIONAHA.110.014019

Type

Journal article

Journal

Circulation

Publication Date

13/09/2011

Volume

124

Pages

S46 - S54

Keywords

Animals, Apoptosis, Embryonic Stem Cells, Female, Gene Knockdown Techniques, Genetic Therapy, Hypoxia-Inducible Factor 1, alpha Subunit, Mice, Mice, Inbred Strains, Mixed Function Oxygenases, Models, Animal, Myoblasts, Cardiac, Myocardial Infarction, Myocardium, Myocytes, Cardiac, Neovascularization, Physiologic, Procollagen-Proline Dioxygenase, Stem Cell Transplantation, Treatment Outcome