Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Renal cell carcinomas (RCC) are refractory to standard therapy with advanced RCC having a poor prognosis; consequently treatment of advanced RCC represents an unmet clinical need. The von Hippel-Lindau (VHL) tumor suppressor gene is mutated or inactivated in a majority of RCCs. We recently identified a 4-pyridyl-2-anilinothiazole (PAT) with selective cytotoxicity against VHL-deficient renal cells mediated by induction of autophagy and increased acidification of autolysosomes. We report exploration of structure-activity relationships (SAR) around this PAT lead. Analogues with substituents on each of the three rings, and various linkers between rings, were synthesized and tested in vitro using paired RCC4 cell lines. A contour map describing the relative spatial contributions of different chemical features to potency illustrates a region, adjacent to the pyridyl ring, with potential for further development. Examples probing this domain validated this approach and may provide the opportunity to develop this novel chemotype as a targeted approach to the treatment of RCC.

Original publication

DOI

10.1021/jm901457w

Type

Journal article

Journal

J Med Chem

Publication Date

28/01/2010

Volume

53

Pages

787 - 797

Keywords

Aniline Compounds, Autophagy, Carcinoma, Renal Cell, Cell Line, Tumor, Drug Delivery Systems, Humans, Lysosomes, Pyridines, Structure-Activity Relationship, Thiazoles, von Hippel-Lindau Disease